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 Flexible Job Shop with Parallel Batch Processor (FJSP-BP) has been studied 
by several researchers, but the objective function has generally been 
limited to minimizing makespan. With the growing awareness towards 
environmental issues, it has become increasingly important to incorporate 
objective function that address environmental impacts, such as energy 
consumption. This research using two objective functions in FJSP-BP 
scheduling, namely makespan and energy consumption. MultiPopulation 
Strength Pareto Evolutionary Algorithm 2 (MP-SPEA2) will be used to 
solve that multiobjective scheduling. The concept of Multi population on 
classical SPEA2 are conducted by applying several sub population that run 
in parallel so that the optimization process can avoid local optima. The 
results of the research show that MP-SPEA2 provides more optimal results 
compared to classical SPEA2 and benchmarks from previous research. 
Therefore, it can be used as an alternative to solve similar cases in the 
industrial sector to produce machine scheduling that are not only 
profitable but also eco-friendly. 
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1. INTRODUCTION  
Production scheduling is a process of organizing, controlling and improving work efficiency in a 
factory. This activity distributes jobs to each machine within a certain time period to optimize a specific 
objective function [1]. Production scheduling can be divided into several categories depending on the 
production flow, which are flow shop, job shop, and open shop [2]. In Flow Shop scheduling, a set of 
machines is arranged in series and every job undergoes identical processing sequence on each machine 
[3]. In Job Shop scheduling, there are jobs that have different machine processing routes compared to 
other jobs. Job shop scheduling is often used in manufacturing environments that produce customized 
products [4]. Research on job shop scheduling has evolved with the introduction of flexibility, where 
a job can be processed by more than one machine, which differs from the traditional job shop where 
each job can only be processed by one specific machine. This scheduling is called Flexible Job Shop 
Scheduling Problem (FJSSP) [5].  

With the increasing competition in the Industrial sector, companies are required to provide more 
optimized services in terms of production speed, one of which is by increasing machine utility. This 
can be done by using batch scheduling. In conventional scheduling, the machine can only process one 
job, but in batch scheduling the machine can process a set of jobs according to the capacity of the 
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machine. The set of jobs will be processed with the same start time and completion time. Batch 
scheduling is divided into two, namely serial batch, where each individual job in the batch is processed 
sequentially (in series). Next , parallel batch, where each job is completed simultaneously (parallel)[6]. 
Batch scheduling has been widely applied in industries such as aircraft, steel processing, glass 
manufacturing and semiconductor industry [7]. Although it increases the machine utility, the total 
capacity of the batch will be crucial, if there are too many jobs assigned to the batch, the batch machine 
will become a bottleneck in the production flow because the processing time of a job is the collective 
completion time of all the jobs in the batch, delaying the processing of the job for the next machine, 
while if there are too few jobs assigned to the batch machine will reduce the machine utility [8]. 
Therefore, an optimal batch scheduling method is required 

The first research related to Flexible Job Shop with parallel batch processing was conducted by 
[9] using an exact scheduling method, Mixed Integer Linear Programming (MILP) but this method 
does not run optimally for the case of a large number of jobs and machines, research using heuristic 
methods is more appropriate for cases with a larger scale, some researchers use heuristic methods, 
such as, hybrid Particle Swarm Optimization (PSO) methods [10]. Hybrid Large Neighborhood Search 
(LNS) [11] and most recently hybrid multi population genetic algorithm [12]. All of these researches use 
a single objective function, which is to minimize the overall job completion time (makespan). 

Energy-based scheduling is a topic that is often discussed with the rising cost of energy [13]. Some 
studies use energy consumption objective function to involve sustainability aspects in production 
planning [14] as performed by [15]  and [16] in case of FJSSP. Research related to the energy 
consumption objective function has reached 15 percent of all production scheduling articles in 2021, 
under the makespan and tardiness objective functions. The use of more than one objective function 
(multiobjective) in certain situations will be more relevant in the industrial world [17]. 

This research focuses on two objective functions, namely makespan and energy consumption in 
Flexible Job Shop Scheduling with Parallel Batch Processors. The makespan objective is related to 
operational aspects, it aims to schedule jobs in a way that minimizes the total completion time. On the 
other hand, energy consumption is linked to environmental concerns. Therefore, combining these two 
objective functions results in a scheduling approach that not only optimizes operational efficiency but 
also addresses environmental sustainability. Generally, multi-objective optimization cannot find a 
single minimum solution for each objective function simultaneously, because there will be a trade-off 
[18] among one objective function and another. For example, scheduling with a makespan objective 
function will allocate jobs to the machine with the fastest processing time without considering the 
energy consumption of the machine. Meanwhile, scheduling with an energy consumption objective 
function will focus on allocating jobs to machines with the least power usage which may sacrifice job 
completion time. Thus, multi-objective optimization will search a solution that is good enough and 
not dominated by other solutions, this solution is called pareto optimal. Methods using pareto that are 
quite often used are Nondominated Sorting Genetic Algorithm (NSGA-II) [19] and Strength Pareto 
Evolutionary Algorithm SPEA2 [20]. The SPEA2 algorithm is a type of evolutionary algorithm that 
imitate the concept of evolution in living organisms, such as selection, crossover, and mutation. The 
SPEA2 algorithm uses the concept of "strength" to determine the quality of a solution. A solution is 
evaluated based on the number of other solutions it dominates; solutions that dominate others are 
stored in an archive to ensure they are not lost during crossover or mutation. 

Research [21] shows that the SPEA2 method has better performance and more diverse solutions 
compared to NSGA-II for objective functions with no more than two objectives. However, these Pareto-
based algorithms are prone to getting stuck in local optima because they use only a single population 
in each evolutionary step. In multi-population, the population will be divided into several 
subpopulations, each of these subpopulations will run in parallel with different parameters or types of 
crossover and mutation, Therefore it will be able to explore more varied solutions that may not be 
found in classic SPEA2. Research related to multi-population was conducted by [22] where the results 
showed the Multi-Population NSGA-II improved the quality of solutions compared to the NSGA-II 
algorithm. 
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This research uses Multi population SPEA2 to optimize Flexible Job Shop scheduling with parallel 
batch processors in terms of time and energy. There are two novelties in this research, the first is 
related to the use of more than one objective function, namely makespan and energy consumption in 
Flexible Job Shop Scheduling with Parallel Batch Processing. The second is the use of a modification 
of the SPEA2 algorithm, namely Multi population SPEA2 which is relatively new in solving these 
scheduling.The results of this research are expected to be useful in industrial sectors that use similar 
scheduling flows such as semiconductors, to produce machine scheduling that is not only profitable 
but also eco-friendly.  

2. RESEARCH METHOD  
2.1. Flexible Job Shop Batch Processing Machine 

The mathematical model for Flexible Job Shop Scheduling with Parallel Batch Processors is as follows: 
Objective Function 
min⁡(max(𝐸𝑘𝑖))                                                                                                                                               (1) 
Constraints 
𝑍1 − 𝑍2 > 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 
𝑌𝑖𝑗 + 𝑌𝑗𝑖 = 1∀𝑘, 𝑖, 𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

𝑆𝑘𝑖 ≥ 0, 𝐸𝑘𝑖 > 0, ∀𝑖, 𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 
𝑍3 ≤ 𝐶𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 
𝐸𝑘𝑖 = 𝑆𝑘𝑖 + 𝑇𝑘𝑖 , ∀𝑘, 𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

∑𝑋𝑘𝑖𝑚 = 1⁡, ∀𝑘, 𝑖, 𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7)

𝑖

 

𝑆𝑘𝑖 = 𝑆𝑖𝑗 , 𝐸𝑘𝑗 = 𝐸𝑙𝑗 ⁡, ∀𝑖, 𝑗 ∈ 𝐵𝑚𝑏 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

𝑃𝑘𝑖𝑎𝑚 + 𝑃𝑘𝑖𝑏𝑚 + 𝑃𝑘𝑖𝑎𝑛 + 𝑃𝑘𝑏𝑛 = 1⁡, ∀𝑎 ≠ 𝑏,𝑚 ≠ 𝑛, 𝑘, 𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

 
Var Definition Var Definition 
𝑖, 𝑗 Operation index 𝐵𝑛𝑏  The b-th batch on the n-th parallel batch machine 
𝑘, 𝑙 job index U set of operation proceeded by batch processing 

machine 
𝑚, 𝑛 machine index 𝑀𝑘𝑖 set of machine for proceeding the 𝑂𝑘𝑖  operation 
𝑏 batch index 𝐷𝑘𝑖 capacity demand for each set operation in U 
𝑂𝑘𝑖  The i-th  operation of job-k 𝑌𝑘𝑖𝑗𝑙  equals to 1 if 𝑂𝑘𝑖  precedes operation 𝑂𝑘𝑗  and 0 

otherwiese 
𝑆𝑘𝑖  Starting time of 𝑂𝑘𝑖  𝑍2, auxiliary variable, if 𝐸𝑘𝑖  multiplied by 𝑌𝑘𝑖𝑗 , 

𝐸𝑘𝑖  completion time of 𝑂𝑘𝑖  , 𝑍3 Auxiliary Variable if 𝐷𝑘𝑖  multiplied by 𝑃𝑘𝑖𝑏𝑛  
𝑇𝑘𝑖𝑚 Processing time of 

operation 𝑂𝑘𝑖  on machine m 
𝑋𝑘𝑖𝑚 

{
1,⁡⁡⁡𝑂𝑘𝑖 ∈ 𝑚
0,⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⁡⁡⁡⁡⁡ 

𝑍1 auxiliary variable if 𝑆𝑘𝑖  
multiplied by 𝑌𝑘𝑖𝑗 

⁡𝑃𝑘𝑖𝑏𝑚 
{
1,⁡⁡⁡𝑖𝑓⁡𝑂𝑘𝑖 ⁡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑⁡𝑜𝑛⁡𝑏𝑎𝑡𝑐ℎ⁡𝑏⁡𝑖𝑛⁡𝑛 − 𝑡ℎ⁡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
0,⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 

. 
Equation (1) show final completion time that is the largest processing time. Equation (2) and (3) ensure 
the order of the completion of operations and assuring that each operation is processed once. Equation 
(4) ensures the starting time and completion time are positive. Equation (5) shows the capacity 
limitation of the batch machine. Equation (6) shows the definition of operation completion time. 
Equation (7) ensures each operation can only be processed by one machine, Equation (8) shows the 
limitation of batch machine processing time, Equation (9) shows each operation can only be in a single 
batch [12]. 

2.2. Energy Consumption 

Energy consumption in Flexible Job Shop scheduling is obtained by calculating the total energy 
consumption of machines when they are working and idle. The energy consumption of a working 
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machine is the total energy consumption of the machine when processing an operation⁡𝑂𝑘𝑖  multiplied 
by the completion time of the operation  𝐸𝑘𝑖 . Meanwhile, the energy consumption when idle is the 
energy consumption of the machine when it is running but not processing an operation. Energy 
consumption on a parallel batch processor machine for n-jobs are as follow: The processing time batch-
b is determined by the completion time of the longest job in the batch. Let ⁡𝑆𝑏 ,⁡and 𝐶𝑏denotes start 
time and completion time of the batch. The machine cannot be shut down until the job processing is 
completed. The electricity consumption during processing time is denoted as⁡𝑃𝑃 and the electricity 
consumption during idle time is denoted as IP. The total energy consumption is as follows 

𝐸𝐶 = ∑ ∑ 𝐼𝑃𝑏𝑡 +∑ ∑ 𝑃𝑃𝑏𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10)

𝐶𝑏

𝑡=𝑠𝑏+1

𝑛

𝑏=1

𝐶𝑏

𝑡=𝑠𝑏+1

𝑛−1

𝑏=0

 

Total Energy Consumption is in form of electricity consumption during working and idle [23].  

2.3. Multi-Population SPEA-2 Algorithm  

Strength Pareto Evolutionary Algorithm 2 is an algorithm based on evolutionary principles used to 
solve multiobjective problems. This algorithm uses the concept of “strength”, which ranks solutions 
based on strength, in other words, the number of dominated solutions. The fundamental procedure of 
SPEA2 is as follows 
Step 1: Initialize individuals for each population, determine the variable 𝑃0, and the archive variable 𝑃0̅̅ ̅ 
with the number of iterations 𝑡 = 0. For illustration, the example individual as shown in the figure 1 
 

4 1 2 3 3 4 5 1 2 5 1 3 2 5 4 

 

1 2 3 2 4 5 1 2 3 6 4 5 6 6 4 

 

 

 Figure 1. Individual 

The individuals consist of two chromosomes: job order and machine assignment, The chromosome 
consists of several genes, the number 4 in the first gene and the first chromosome indicates that 
operation 𝑂41 is processed first then followed by operation 𝑂11⁡and so forth. The second chromosome 
shows the machine assignment, which means 𝑂41 is processed by machine 1. Operations 𝑂11and 𝑂31⁡are 
processed simultaneously in one batch 1 by machine 2.  
Step 2: Determine the Fitness Value 𝐹(𝑖) for each individual in population   
Step 3: Selection Process. Insert non dominated solution 𝑃𝑡 and 𝑃̅𝑡+1 and if 𝑃̅𝑡+1 greater than 𝑁, which 
is the total population, perform the pruning process using the adaptation degree. 
𝑆(𝑖) = {𝑗|𝑗 ∈ 𝑃𝑡 + 𝑃𝑡̅ ∩ 𝑗 ≺ 𝑖} 

𝑅(𝑖) = ∑ 𝑆(𝑗)

𝑗∈𝑃𝑡+𝑃𝑡̅̅ ̅,𝑖≺𝑗

 

where 𝑆(𝑖) denotes amount of individuals that are dominated by individual 𝑖. 𝑅(𝑖) denotes the 
adaptation value which contains the amount of  individuals⁡𝑖 that are dominated by 𝑗. 𝑘-neighborhood 
is used to estimate the density. The distance between solutions in the population is expressed in the 

order 𝜎𝑖
𝑘 where 𝐾 = √𝑁 + 𝑁 to ensure the value is within the interval (0,1) 

Distance of solutions in the population 𝐷(𝑖). 

𝐷(𝑖) =
1

𝜎𝑖
𝑘  

Thus, the fitness value is 
𝐹(𝑖) = 𝑅(𝑖) + 𝐷(𝑖)  
Step 4: When 𝑡⁡ > ⁡𝑇 or any other condition is met, the new non-dominant solution 𝑃̅𝑡+1 is displayed 

Step 5: Perform tournament selection on 𝑃̅𝑡+1 to be added on mating pool. 

Batch 1 Batch 2 Batch 3 
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Step 6:Select solutions from mating pool to undergo crossover and mutation process and return to the 
second step  [20]. 
Figure 1 illustrates two chromosomes that will undergo crossovers process, the crossovers between 
these chromosomes will produce two offspring as shown in Figure 3 

4 1 2 3 3 4 5 1 2 5 1 3 2 5 4 

 

3 1 2 4 5 1 4 3 2 5 4 1 3 2 5 

Figure 2. Parent Chromosome 

3 3 4 5 1 2 1 2 4 2 5 4 1 3 5 

 

4 1 2 3 4 5 1 3 2 5 1 3 2 5 3 

Figure 3. Offspring Chromosome 

The mutation process is performed by exchanging several genes from the initial chromosome. This 
gene exchange will produce a new solution. One form of mutation is insertion, as shown in Figure 4. 
 

4 1 2 3 3 4 5 1 2 5 1 3 2 5 4 

 

3 3 4 5 1 2 5 1 3 2 4 1 2 5 4 

Figure 4. Mutation Process 

In the concept of multi-population, the population in SPEA2 is not single, there are several populations 
that will run simultaneously. Each individual in the population at a certain condition can move 
(migrate) to another population, this is necessary to increase the variation of the solution so it doesn't 
become trapped in the local optimum [24].  

The Multi Population process as shown in Fig 5 begins by generating a set of individuals or 
chromosomes to form a population. This population will be partitioned into several subpopulations. 
Each subpopulation will undergo a selection process. Individuals in the subpopulation that have the 
best fitness value will be kept in the archive set, which is a collection of non-dominated solutions, 
while other solutions will enter the mating pool to be selected as parents which will then produce 
offspring through the crossover. Mutation will also be performed on the selected solutions based on 
the mutation probability. The next stage is integration process where non-dominated solutions will be 
merged with other solutions. Each subpopulation can exchange its individual at certain iterations to 
explore the search space. If the maximum number of iterations has not been reached, the process 
returns to the selection step, otherwise it is terminated. 

2.4. Methodology 

Nine cases used in this study are the benchmark instances MK1–MK9 from Brandimarte  [25], where 
each case consists of various number of jobs, operations and machines, for example for MK9 consists 
of 20 jobs, 10 machines, a range of 10-15 operations for each job. Research [12] modified the case by 
adding parallel batch processing machine in each case. Here an example modified case for MK1 and 
MK2: 1-3, 5-4, 6-3, 7-5, 8-6, 9-5. For the MK1 case, 1-3 denotes 𝑂13, and 5-4 denotes 𝑂56⁡and so forth. 
These six operations will be performed by the batch processing machine simultaneously. The batch 
processing machine in this particular instance has a capacity of 10, which means it can process 10 
operations simultaneously. 

Since based on the author’s observation, there has not been any research related to the FJSSP case 
with batch processing machines that considers energy consumption Hence in this research random 
numbers are generated regarding energy consumption t=0.01~0.03 for non-batch machines in idle 
state, and t=0.1~0.3 when working, while for batch machines energy consumption t=0.03~0.05, in idle 
state and t=0.7~0.9 when working. 
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Figure 5. Flowchart Multi-Population SPEA2 Algorithm 

The SPEA2 algorithm is used to solve the FJSP case with a parallel batch processor for MK1-Mk9 data 
and compare the results with benchmarks from previous research. Since both research only use one 
objective function, the SPEA2 algorithm will be considered successful if it has a makespan value that 
is close to or even smaller than the benchmark from previous studies. Furthermore, the multi-
population algorithm will be compared with the SPEA2 algorithm on the same cases. Each algorithm 
is executed five times, and the set of non-dominated solutions will be presented 

The parameters used in the SPEA2 algorithm are as follows: population size ranges from 100 
to 200, maximum iterations ranges from 100 to 300, crossover probability ranges from 0.5 to 0.8, and 
mutation probability ranges from 0.4 to 0.7.  

The parameters used in MP-SPEA2 algorithm, four subpopulations were used in this study. 
Each subpopulation consisted of 25 to 50 chromosomes and performed a total of 100 to 300 iterations. 
Migration, or information exchange, occurred every five iterations, involving the exchange of some of 
the best and worst individuals between subpopulations. In addition, random exchanges of individuals 
were conducted to avoid premature convergence. Each subpopulation used different crossover and 
mutation probabilities, such as 0.8 and 0.2; 0.5 and 0.5; 0.8 and 0.7; 0.2 and 0.8. 

3. RESULTS AND DISCUSSIONS  
3.1. Result 

The results using SPEA2 with makespan and energy consumption as shown in Table 1: 
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Table 1. Makespan Comparison 

Case SPEA2 Makespan 
[25] 

Makespan 
[12] Makespan Energy 

MK1 36 
37 

34,09  
32,37 

42-65 40-58 

MK2 35 25,88 32-48 43-45 

MK3 136 
137 
141 

134,22 
133,59 
132,72 

211-506 247-359 

MK4 92 
100 

85,38 
83,44 

81-121 74-99 

MK5 234 154,62 186-291 164-207 

MK6 85 91,26 86-128 111-187 

MK7 123 
119 
116 

117,58 
118,45 
118,47 

157-262 111-187 

 

 

MK8 347 454,71 523-1042 479-586 

MK9 363 
383 

472,5 
468,2 

369-723 360-466 

 

MK10 351 389,8 296-536 326-467 

 364 383,98  

Table 1 shows the results obtained by the SPEA2 algorithm. The SPEA2 algorithm is an algorithm 
designed to solve cases with multiple objective functions, and in this case the objective functions are 
makespan and energy consumption. For MK1 case, this algorithm produces a non-dominated solution, 
first solution with a makespan of 36 and energy consumption of 34.09 and second soluton with a 
makespan of 37 and energy consumption of 32.37. The lower the makespan and energy consumption, 
the more desirable that solution becomes. The first solution produces a lower makespan than the 
second solution, but the second solution produces a smaller energy consumption than the first solution 
so that the two solutions do not dominate each other (equally strong). The makespan value represents 
the total completion time for all jobs. For example, if the makespan is 36, it means that all jobs are 
completed by the machines in 36, measured in time units. Meanwhile, the energy consumption value 
indicates the total amount of energy used by the machines to complete all jobs. For instance, a value 
of 34.09 indicates that the total energy consumed is 34.09, measured in energy units. 

Meanwhile, for the comparison of makespan results (benchmark), previous research [25]. 
obtained makespan with several methods and had the lowest makespan value of 42.  When compared 
to some previous studies, even though this research uses more than one objective function, namely 
makespan and energy consumption. The SPEA2 algorithm produces makespan values that are close to 
and even better for some cases compared to existing benchmarks. 

As opposed to the standard SPEA2 Algorithm that uses only one population and evolves in several 
iterations, Multi Population SPEA2 divides the population into several subpopulations, where each of 
these subpopulations will undergo an evolutionary process in parallel and independently. Each of these 
subpopulations under certain conditions will exchange information, in this case the exchange of 
chromosomes so that the search for solutions will be more varied and will accelerate convergence. The 
results obtained by using the SPEA2 Multi population algorithm are as shown in Table 2 

Table 2. Comparison Using SPEA-2 and Multi Population SPEA2 

Case SPEA2 Multi Population SPEA2 

Makespan Energy Makespan Energy 

MK1 36 
37 

34,09  
32,37 

32 
34 

32,39 
32,22 

MK2 35 25,88 33 26,43 

MK3 136 
137 
141 

134,22 
133,59 
132,72 

136 
136 
137 

130,18 
131,11 

128,86 
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Case SPEA2 Multi Population SPEA2 

Makespan Energy Makespan Energy 

MK4 92 
100 

85,38 
83,44 

86 89,2 

MK5 234 154,62 232 159,7 

MK6 85 91,26 82 94,26 

MK7 123 
119 
116 

117,58 
118,45 
118,47 

104 116,53 
 

MK8 347 454,71 344 452,75 

MK9 363 
383 

472,5 
468,2 

332 
334 

437,73 
433,09 

MK10 351 389,8 325 382,91 

 364 383,98 

 

Based on testing for 10 FJSSP cases with batch processing machines the Multi population SPEA2 (MP-
SPEA2) algorithm excels in several cases except in cases, MK2, MK4, MK5, MK6, in that cases although 
the (MP-SPEA2) algorithm produces lower makespan, but the SPEA2 algorithm has lower energy 
consumption.  

3.2. Discussion  

Despite having two objective functions, the multi population SPEA2 algorithm produces makespan 
values that are comparable to or even better than previous studies which uses only one objective 
function, except for the MK4 and MK5 cases. The proposed algorithm produces better quality solutions 
in 6 cases, MK1, MK3, MK7, MK8, MK9, MK10 compared to the SPEA2 algorithm, although in four 
other cases MP-SPEA2 is not superior, SPEA2 does not have a more dominant solution than MP-SPEA2.  
Distribution of MK4 case solutions generated by these two algorithms. Figure 6 shows some solution 
using the SPEA2 algorithm for several iterations. The vertical axis represents the makespan, while the 
horizontal axis shows the results for the energy consumption. Figure 6(a) presents the solution at the 
50th iteration, where the distribution of each solution is still quite wide, and both objective function 
that is makespan and energy consumption values remain relatively high. In Figure 6(b), the solution 
distribution is still wide, but the values of both objective functions begin to decrease. In Figures 6(c) 
and 6(d), the solutions exhibit decreasing objective function values and a distribution that becomes 
more concentrated toward the optimal area. A clear trade-off is observed, where solutions with lower 
makespan values tend to have higher energy consumption, whereas solutions with lower energy 
consumption typically have higher makespan values.  

For the MP-SPEA2 algorithm, the distribution of solutions shown in Figure 7. In Figure 7(a), at 
the 5th iteration, the solutions still exhibit a wide distribution, however, the range of makespan and 
energy consumption values is smaller compared to SPEA2. In Figure 7(b), the solutions have already 
toward converged, leaving only two optimal non-dominated solutions. The use of multiple populations 
running in parallel in MP-SPEA2 allows this algorithm to have different crossover, mutation 
parameters, and archive sets for each subpopulation, in contrast to the standard SPEA2, which uses 
only a single set of parameters and an archive set. In addition, migration of solutions between 
subpopulations enables MP-SPEA2 to explore a wider solution space compared to the standard SPEA2 
algorithm. This increases the likelihood of discovering solutions with better trade-offs and accelerates 
the convergence process. 

In industries that implement FJSP scheduling with parallel batch processors, there are various 
types of jobs that must be processed by a limited number of machines, each with different processing 
times and energy consumption levels. The MP-SPEA2 algorithm can be applied to determine the 
sequence of jobs, assign machines for each job, and decide which jobs should be grouped into batches, 
aiming to achieve optimal scheduling in terms of both completion time and energy consumption. By 
minimizing energy consumption, companies can reduce energy costs, lower pollution, and enhance 
their reputation, all of which are closely related to corporate sustainability 
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4. CONCLUSION  
The proposed Multi population SPEA2 algorithm demonstrates optimal performance in solving the 
Flexible Job Shop Scheduling Problem (FJSSP) involving batch processors to simultaneously minimize 
two objective functions, namely makespan and energy consumption. By dividing the population in 
SPEA2 into several subpopulations, Multi Population SPEA2 improves the performance of the classical 
SPEA2 algorithm. This algorithm is expected to serve as an alternative solution for similar cases in 
industry, enabling production processes that are not only time-efficient but also environmentally 
friendly. The multi-population process can also be applied to existing metaheuristic algorithms to 
accelerate convergence. However, this study has limitations since the data used is static and 
deterministic. This study does not take into account uncertain processing times, the arrival of new 
jobs, machine breakdowns, or other events that require real-time rescheduling. Under such conditions, 
the use of metaheuristic algorithms would require considerable computational time, since the 
algorithm would need to be run multiple times for each rescheduling event. Therefore, combining 
reinforcement learning with metaheuristic concepts can be utilized to address scheduling processes 
involving dynamic and probabilistic data for future research. 
 
 
 
 
 
 
 
 
 
 
                             a) 50th iteration     b)  100th iteration 
 
 
 

 

 

 

 

 

 

 

 

                              c) 150th iteration                                                        d) 200th iteration 
Figure 6. Solution for MK4 using SPEA2 for some iteration 

 

 

 

 

 

 

 

                                        

 

 

 

                            a) 5th iteration          b) 20th iteration 

Figure 7. Solution for MK4 using MP-SPEA2 for some iteration 
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