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1. INTRODUCTION

Production scheduling is a process of organizing, controlling and improving work efficiency in a
factory. This activity distributes jobs to each machine within a certain time period to optimize a specific
objective function [1]. Production scheduling can be divided into several categories depending on the
production flow, which are flow shop, job shop, and open shop [2]. In Flow Shop scheduling, a set of
machines is arranged in series and every job undergoes identical processing sequence on each machine
[3]. In Job Shop scheduling, there are jobs that have different machine processing routes compared to
other jobs. Job shop scheduling is often used in manufacturing environments that produce customized
products [4]. Research on job shop scheduling has evolved with the introduction of flexibility, where
a job can be processed by more than one machine, which differs from the traditional job shop where
each job can only be processed by one specific machine. This scheduling is called Flexible Job Shop
Scheduling Problem (FJSSP) [5].

With the increasing competition in the Industrial sector, companies are required to provide more
optimized services in terms of production speed, one of which is by increasing machine utility. This
can be done by using batch scheduling. In conventional scheduling, the machine can only process one
job, but in batch scheduling the machine can process a set of jobs according to the capacity of the
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machine. The set of jobs will be processed with the same start time and completion time. Batch
scheduling is divided into two, namely serial batch, where each individual job in the batch is processed
sequentially (in series). Next , parallel batch, where each job is completed simultaneously (parallel)[6].
Batch scheduling has been widely applied in industries such as aircraft, steel processing, glass
manufacturing and semiconductor industry [7]. Although it increases the machine utility, the total
capacity of the batch will be crucial, if there are too many jobs assigned to the batch, the batch machine
will become a bottleneck in the production flow because the processing time of a job is the collective
completion time of all the jobs in the batch, delaying the processing of the job for the next machine,
while if there are too few jobs assigned to the batch machine will reduce the machine utility [8].
Therefore, an optimal batch scheduling method is required

The first research related to Flexible Job Shop with parallel batch processing was conducted by
[9] using an exact scheduling method, Mixed Integer Linear Programming (MILP) but this method
does not run optimally for the case of a large number of jobs and machines, research using heuristic
methods is more appropriate for cases with a larger scale, some researchers use heuristic methods,
such as, hybrid Particle Swarm Optimization (PSO) methods [10]. Hybrid Large Neighborhood Search
(LNS) [11] and most recently hybrid multi population genetic algorithm [12]. All of these researches use
a single objective function, which is to minimize the overall job completion time (makespan).

Energy-based scheduling is a topic that is often discussed with the rising cost of energy [13]. Some
studies use energy consumption objective function to involve sustainability aspects in production
planning [14] as performed by [15] and [16] in case of FJSSP. Research related to the energy
consumption objective function has reached 15 percent of all production scheduling articles in 2021,
under the makespan and tardiness objective functions. The use of more than one objective function
(multiobjective) in certain situations will be more relevant in the industrial world [17].

This research focuses on two objective functions, namely makespan and energy consumption in
Flexible Job Shop Scheduling with Parallel Batch Processors. The makespan objective is related to
operational aspects, it aims to schedule jobs in a way that minimizes the total completion time. On the
other hand, energy consumption is linked to environmental concerns. Therefore, combining these two
objective functions results in a scheduling approach that not only optimizes operational efficiency but
also addresses environmental sustainability. Generally, multi-objective optimization cannot find a
single minimum solution for each objective function simultaneously, because there will be a trade-off
[18] among one objective function and another. For example, scheduling with a makespan objective
function will allocate jobs to the machine with the fastest processing time without considering the
energy consumption of the machine. Meanwhile, scheduling with an energy consumption objective
function will focus on allocating jobs to machines with the least power usage which may sacrifice job
completion time. Thus, multi-objective optimization will search a solution that is good enough and
not dominated by other solutions, this solution is called pareto optimal. Methods using pareto that are
quite often used are Nondominated Sorting Genetic Algorithm (NSGA-II) [19] and Strength Pareto
Evolutionary Algorithm SPEA2 [20]. The SPEA2 algorithm is a type of evolutionary algorithm that
imitate the concept of evolution in living organisms, such as selection, crossover, and mutation. The
SPEA:2 algorithm uses the concept of "strength" to determine the quality of a solution. A solution is
evaluated based on the number of other solutions it dominates; solutions that dominate others are
stored in an archive to ensure they are not lost during crossover or mutation.

Research [21] shows that the SPEA2 method has better performance and more diverse solutions
compared to NSGA-II for objective functions with no more than two objectives. However, these Pareto-
based algorithms are prone to getting stuck in local optima because they use only a single population
in each evolutionary step. In multi-population, the population will be divided into several
subpopulations, each of these subpopulations will run in parallel with different parameters or types of
crossover and mutation, Therefore it will be able to explore more varied solutions that may not be
found in classic SPEA2. Research related to multi-population was conducted by [22] where the results
showed the Multi-Population NSGA-II improved the quality of solutions compared to the NSGA-II
algorithm.

Int J of Basic & App Sci, Vol.14, No. 1, Jun 2025: 01-11



Int J of Basic & App Sci p-ISSN 2301-8038 e-ISSN 2776-3013 a 3

This research uses Multi population SPEA2 to optimize Flexible Job Shop scheduling with parallel
batch processors in terms of time and energy. There are two novelties in this research, the first is
related to the use of more than one objective function, namely makespan and energy consumption in
Flexible Job Shop Scheduling with Parallel Batch Processing. The second is the use of a modification
of the SPEA2 algorithm, namely Multi population SPEA2 which is relatively new in solving these
scheduling.The results of this research are expected to be useful in industrial sectors that use similar
scheduling flows such as semiconductors, to produce machine scheduling that is not only profitable
but also eco-friendly.

2.  RESEARCH METHOD
2.1. Flexible Job Shop Batch Processing Machine

The mathematical model for Flexible Job Shop Scheduling with Parallel Batch Processors is as follows:
Objective Function

min (max(Ey;)) D
Constraints
Z1—2,>0 (2)
Y + Y = 1Vk,i,j 3)
Ski = 0,E,; > 0,Vi,j (4)
Z3; < Cp (5)
Eyi = Sii + Triy VK, i (6)
ZX"”" = 1,vki,m %)

L
Ski = SijiExj = Eyj ,Vi,j € By 8
Priam + Pribm + Prian + Peon = 1,Ya = b,m = n,k,i 9

Var Definition Var Definition

i,j  Operation index B,,  The b-th batch on the n-th parallel batch machine

k,l  jobindex U  set of operation proceeded by batch processing

machine
m,n  machine index M;;  set of machine for proceeding the 0;; operation
b  batch index Dy;  capacity demand for each set operation in U
0; Thei-th operation of job-k Yeiji  equals to 1 if Oy; precedes operation Oy; and o
otherwiese

Ski Starting time of Oy; Z,,  auxiliary variable, if Ej; multiplied by Y,

E,; completion time of Oy; ,Z3  Auxiliary Variable if D;; multiplied by Py,

Txim Processing time of  Xiim { 1, O €M

operation Oy; on machine m 0, otherwise

Z, auxiliary variable if Sy Pripm {1, if Oy; processed on batch b inn — th parallel
multiplied by Y};; 0, otherwise

Equation (1) show final completion time that is the largest processing time. Equation (2) and (3) ensure
the order of the completion of operations and assuring that each operation is processed once. Equation
(4) ensures the starting time and completion time are positive. Equation (5) shows the capacity
limitation of the batch machine. Equation (6) shows the definition of operation completion time.
Equation (7) ensures each operation can only be processed by one machine, Equation (8) shows the
limitation of batch machine processing time, Equation (9) shows each operation can only be in a single
batch [12].

2.2. Energy Consumption

Energy consumption in Flexible Job Shop scheduling is obtained by calculating the total energy
consumption of machines when they are working and idle. The energy consumption of a working
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machine is the total energy consumption of the machine when processing an operation 0;; multiplied
by the completion time of the operation Ej;. Meanwhile, the energy consumption when idle is the
energy consumption of the machine when it is running but not processing an operation. Energy
consumption on a parallel batch processor machine for n-jobs are as follow: The processing time batch-
b is determined by the completion time of the longest job in the batch. Let S,, and C,denotes start
time and completion time of the batch. The machine cannot be shut down until the job processing is
completed. The electricity consumption during processing time is denoted as PP and the electricity
consumption during idle time is denoted as IP. The total energy consumption is as follows

n-1 Cp n Cp
EC = Z Z [Py + Z Z PPy (10)
b=0 t=sp+1 b=1t=sp+1

Total Energy Consumption is in form of electricity consumption during working and idle [23].

2.3. Multi-Population SPEA-2 Algorithm

Strength Pareto Evolutionary Algorithm 2 is an algorithm based on evolutionary principles used to
solve multiobjective problems. This algorithm uses the concept of “strength”, which ranks solutions
based on strength, in other words, the number of dominated solutions. The fundamental procedure of
SPEA: is as follows

Step 1: Initialize individuals for each population, determine the variable P, and the archive variable P,
with the number of iterations t = 0. For illustration, the example individual as shown in the figure 1

Batch 1 Batch 2 Batch 3

Figure 1. Individual

The individuals consist of two chromosomes: job order and machine assignment, The chromosome
consists of several genes, the number 4 in the first gene and the first chromosome indicates that
operation 0,4 is processed first then followed by operation 0,; and so forth. The second chromosome
shows the machine assignment, which means 0, is processed by machine 1. Operations 0,;and O3, are
processed simultaneously in one batch 1 by machine 2.
Step 2: Determine the Fitness Value F (i) for each individual in population
Step 3: Selection Process. Insert non dominated solution P, and P,,; and if P, greater than N, which
is the total population, perform the pruning process using the adaptation degree.
S@={ljEP+PNj<i}
RO= D 50)

JEPL+PLi<]
where S(i) denotes amount of individuals that are dominated by individual i. R(i) denotes the
adaptation value which contains the amount of individuals i that are dominated by j. k-neighborhood
is used to estimate the density. The distance between solutions in the population is expressed in the

order g/ where K = y/N + N to ensure the value is within the interval (o,1)

Distance of solutions in the population D (i).
1

D(@) = %
Thus, the fitness value is

F() =R + D)

Step 4: When t > T or any other condition is met, the new non-dominant solution P, is displayed
Step 5: Perform tournament selection on P, ; to be added on mating pool.
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Step 6:Select solutions from mating pool to undergo crossover and mutation process and return to the
second step [20].

Figure 1 illustrates two chromosomes that will undergo crossovers process, the crossovers between
these chromosomes will produce two offspring as shown in Figure 3

la 11 2 [3 13 T4 [s5 Tx J2 [s [+ [3 [2 |5 [4 |

I3 11 2 [a I5 1 J4 [3 12 [5 (a4 [1 [3 o |5 |

Figure 2. Parent Chromosome

I3 I3 T4 Is T1 J2 [t [2 Ja J2 |5 [a [1 |3 [5 |

[a [+ [2 [3 Ja [s [1 [3 2 [s [v |3 [2 [5 [3 |
Figure 3. Offspring Chromosome

The mutation process is performed by exchanging several genes from the initial chromosome. This
gene exchange will produce a new solution. One form of mutation is insertion, as shown in Figure 4.

la 11 2 [3 13 T4 [s5s Tx J2 [s [+ [3 [2 |5 [4 |

13 13 4 [s5s I+ J2 [s [+ [3 [2 [4 [1 [2 |5 [4 |

Figure 4. Mutation Process

In the concept of multi-population, the population in SPEA2 is not single, there are several populations
that will run simultaneously. Each individual in the population at a certain condition can move
(migrate) to another population, this is necessary to increase the variation of the solution so it doesn't
become trapped in the local optimum [24].

The Multi Population process as shown in Fig 5 begins by generating a set of individuals or
chromosomes to form a population. This population will be partitioned into several subpopulations.
Each subpopulation will undergo a selection process. Individuals in the subpopulation that have the
best fitness value will be kept in the archive set, which is a collection of non-dominated solutions,
while other solutions will enter the mating pool to be selected as parents which will then produce
offspring through the crossover. Mutation will also be performed on the selected solutions based on
the mutation probability. The next stage is integration process where non-dominated solutions will be
merged with other solutions. Each subpopulation can exchange its individual at certain iterations to
explore the search space. If the maximum number of iterations has not been reached, the process
returns to the selection step, otherwise it is terminated.

2.4. Methodology

Nine cases used in this study are the benchmark instances MKi-MKg from Brandimarte [25], where
each case consists of various number of jobs, operations and machines, for example for MKg consists
of 20 jobs, 10 machines, a range of 10-15 operations for each job. Research [12] modified the case by
adding parallel batch processing machine in each case. Here an example modified case for MK1 and
MKz: 1-3, 5-4, 6-3, 7-5, 8-6, 9-5. For the MKi case, 1-3 denotes 03, and 5-4 denotes Os¢ and so forth.
These six operations will be performed by the batch processing machine simultaneously. The batch
processing machine in this particular instance has a capacity of 10, which means it can process 10
operations simultaneously.

Since based on the author’s observation, there has not been any research related to the FJSSP case
with batch processing machines that considers energy consumption Hence in this research random
numbers are generated regarding energy consumption t=0.01~0.03 for non-batch machines in idle
state, and t=0.1~0.3 when working, while for batch machines energy consumption t=0.03~0.05, in idle
state and t=0.7~0.9 when working.
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Figure 5. Flowchart Multi-Population SPEA2 Algorithm

The SPEA:2 algorithm is used to solve the FJSP case with a parallel batch processor for MKi-Mkg data
and compare the results with benchmarks from previous research. Since both research only use one
objective function, the SPEA2 algorithm will be considered successful if it has a makespan value that
is close to or even smaller than the benchmark from previous studies. Furthermore, the multi-
population algorithm will be compared with the SPEA2 algorithm on the same cases. Each algorithm
is executed five times, and the set of non-dominated solutions will be presented

The parameters used in the SPEA2 algorithm are as follows: population size ranges from 100
to 200, maximum iterations ranges from 100 to 300, crossover probability ranges from 0.5 to 0.8, and
mutation probability ranges from 0.4 to 0.7.

The parameters used in MP-SPEA2 algorithm, four subpopulations were used in this study.
Each subpopulation consisted of 25 to 50 chromosomes and performed a total of 100 to 300 iterations.
Migration, or information exchange, occurred every five iterations, involving the exchange of some of
the best and worst individuals between subpopulations. In addition, random exchanges of individuals
were conducted to avoid premature convergence. Each subpopulation used different crossover and
mutation probabilities, such as 0.8 and 0.2; 0.5 and 0.5; 0.8 and 0.7; 0.2 and 0.8.

3.  RESULTS AND DISCUSSIONS
3.1. Result
The results using SPEA2 with makespan and energy consumption as shown in Table 1:
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Table 1. Makespan Comparison

Case SPEA2 Makespan Makespan
Makespan Energy [25] [12]
MK 36 34,09 42-65 40-58
37 32,37
MK2 35 25,88 32-48 43-45
MK3 136 134,22 211-506 247-359
137 133,59
141 132,72
MK4 92 85,38 81-121 74-99
100 83,44
MKs5 234 154,62 186-291 164-207
MK6 85 91,26 86-128 11-187
MKy 123 17,58 157-262 11-187
19 18,45
16 18,47
MKS8 347 454,71 523-1042 479-586
MKo9 363 472,5 369-723 360-466
383 468,2
MKio 351 389,8 296-536 326-467
364 383,08

Table 1 shows the results obtained by the SPEA2 algorithm. The SPEA2 algorithm is an algorithm
designed to solve cases with multiple objective functions, and in this case the objective functions are
makespan and energy consumption. For MKi case, this algorithm produces a non-dominated solution,
first solution with a makespan of 36 and energy consumption of 34.09 and second soluton with a
makespan of 37 and energy consumption of 32.37. The lower the makespan and energy consumption,
the more desirable that solution becomes. The first solution produces a lower makespan than the
second solution, but the second solution produces a smaller energy consumption than the first solution
so that the two solutions do not dominate each other (equally strong). The makespan value represents
the total completion time for all jobs. For example, if the makespan is 36, it means that all jobs are
completed by the machines in 36, measured in time units. Meanwhile, the energy consumption value
indicates the total amount of energy used by the machines to complete all jobs. For instance, a value
of 34.09 indicates that the total energy consumed is 34.09, measured in energy units.

Meanwhile, for the comparison of makespan results (benchmark), previous research [25].
obtained makespan with several methods and had the lowest makespan value of 42. When compared
to some previous studies, even though this research uses more than one objective function, namely
makespan and energy consumption. The SPEA2 algorithm produces makespan values that are close to
and even better for some cases compared to existing benchmarks.

As opposed to the standard SPEA2 Algorithm that uses only one population and evolves in several
iterations, Multi Population SPEA2 divides the population into several subpopulations, where each of
these subpopulations will undergo an evolutionary process in parallel and independently. Each of these
subpopulations under certain conditions will exchange information, in this case the exchange of
chromosomes so that the search for solutions will be more varied and will accelerate convergence. The
results obtained by using the SPEA2 Multi population algorithm are as shown in Table 2

Table 2. Comparison Using SPEA-2 and Multi Population SPEA2

Case SPEA2 Multi Population SPEA2
Makespan Energy Makespan Energy
MKi 36 34,09 32 32,39
37 32,37 34 32,22
MK2 35 25,88 33 26,43
MK3 136 134,22 136 130,18
137 133,59 136 13,11
141 132,72 137 128,86

Parallel batch processor machine scheduling using multi population strength pareto evolutionary algorithm 2
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Case SPEA2 Multi Population SPEA2
Makespan Energy Makespan Energy
MK4 92 85,38 86 89,2
100 83,44
MKs5 234 154,62 232 159,7
MK6 85 01,26 82 94,26
MK7 123 17,58 104 16,53
19 18,45
16 118,47
MK38 347 454,71 344 452,75
MKo 363 472,5 332 437,73
383 468,2 334 433,09
MKio 351 389,8 325 382,01
364 383,08

Based on testing for 10 FJSSP cases with batch processing machines the Multi population SPEA2 (MP-
SPEA2) algorithm excels in several cases except in cases, MK2, MK4, MKs5, MK®6, in that cases although
the (MP-SPEA2) algorithm produces lower makespan, but the SPEA2 algorithm has lower energy
consumption.

3.2. Discussion

Despite having two objective functions, the multi population SPEA2 algorithm produces makespan
values that are comparable to or even better than previous studies which uses only one objective
function, except for the MK4 and MKj5 cases. The proposed algorithm produces better quality solutions
in 6 cases, MK1, MK3, MK7, MK8, MKg, MKio compared to the SPEA2 algorithm, although in four
other cases MP-SPEAL is not superior, SPEA2 does not have a more dominant solution than MP-SPEA2.
Distribution of MK4 case solutions generated by these two algorithms. Figure 6 shows some solution
using the SPEA2 algorithm for several iterations. The vertical axis represents the makespan, while the
horizontal axis shows the results for the energy consumption. Figure 6(a) presents the solution at the
soth iteration, where the distribution of each solution is still quite wide, and both objective function
that is makespan and energy consumption values remain relatively high. In Figure 6(b), the solution
distribution is still wide, but the values of both objective functions begin to decrease. In Figures 6(c)
and 6(d), the solutions exhibit decreasing objective function values and a distribution that becomes
more concentrated toward the optimal area. A clear trade-off is observed, where solutions with lower
makespan values tend to have higher energy consumption, whereas solutions with lower energy
consumption typically have higher makespan values.

For the MP-SPEA> algorithm, the distribution of solutions shown in Figure 7. In Figure 7(a), at
the sth iteration, the solutions still exhibit a wide distribution, however, the range of makespan and
energy consumption values is smaller compared to SPEA2. In Figure 7(b), the solutions have already
toward converged, leaving only two optimal non-dominated solutions. The use of multiple populations
running in parallel in MP-SPEA2 allows this algorithm to have different crossover, mutation
parameters, and archive sets for each subpopulation, in contrast to the standard SPEA2, which uses
only a single set of parameters and an archive set. In addition, migration of solutions between
subpopulations enables MP-SPEA2 to explore a wider solution space compared to the standard SPEA2
algorithm. This increases the likelihood of discovering solutions with better trade-offs and accelerates
the convergence process.

In industries that implement FJSP scheduling with parallel batch processors, there are various
types of jobs that must be processed by a limited number of machines, each with different processing
times and energy consumption levels. The MP-SPEA2 algorithm can be applied to determine the
sequence of jobs, assign machines for each job, and decide which jobs should be grouped into batches,
aiming to achieve optimal scheduling in terms of both completion time and energy consumption. By
minimizing energy consumption, companies can reduce energy costs, lower pollution, and enhance
their reputation, all of which are closely related to corporate sustainability
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4. CONCLUSION
The proposed Multi population SPEA2 algorithm demonstrates optimal performance in solving the
Flexible Job Shop Scheduling Problem (FJSSP) involving batch processors to simultaneously minimize
two objective functions, namely makespan and energy consumption. By dividing the population in
SPEA:2 into several subpopulations, Multi Population SPEA2 improves the performance of the classical
SPEA2 algorithm. This algorithm is expected to serve as an alternative solution for similar cases in
industry, enabling production processes that are not only time-efficient but also environmentally
friendly. The multi-population process can also be applied to existing metaheuristic algorithms to
accelerate convergence. However, this study has limitations since the data used is static and
deterministic. This study does not take into account uncertain processing times, the arrival of new
jobs, machine breakdowns, or other events that require real-time rescheduling. Under such conditions,
the use of metaheuristic algorithms would require considerable computational time, since the
algorithm would need to be run multiple times for each rescheduling event. Therefore, combining
reinforcement learning with metaheuristic concepts can be utilized to address scheduling processes
involving dynamic and probabilistic data for future research.

144 114
P @
142 113
® o e
140 ® ® o 12
138 s M a L4
[ 2 =
© 8 o
@ 136 £ 100 @
& 2 ®
e 108
134 =
® o o
® 106
132 P
s e
130 19
e ®
104 . . . . . .
124 4 5 . : A . ; 94 95 96 99 97 98 99 100
109 110 111 12 13 M3 114 116

energy consumption
energy consumption

a) 50 iteration b) 100™ iteration

A Q@ @n
107 ® 100 L 200 3

106

makespan

104 8 o e o
g
g

103 o5 - -

102 ee

" " " N N . s
86.0 8.5 88.5 88.5 8.9 8.0 o2 . o

" 83 84 8.5 85 86
energy consumption energy consumption

c) 150" iteration d) 200" iteration
Figure 6. Solution for MK4 using SPEA2 for some iteration

20
B7

86.9
B68 -
86.7

107
5 s 866
g ]
2 o
£ on - e Zaasl
£ =
- - E gg.4
104 | - - 86.3 -
103 - - 86.2

B86.1

86 . . : . . . e
= - = == = == s ~— =L 8504 8506 8508 a5.1 85.12 85.14 85.16 85.18 85.2 8522
a) 5" iteration b) 20 iteration

Figure 7. Solution for MK4 using MP-SPEA2 for some iteration

Parallel batch processor machine scheduling using multi population strength pareto evolutionary algorithm 2
(Ferdinan Rinaldo Tampubolon, et al)



a p-ISSN 2301-8038 e-ISSN 2776-3013

[19]

[20]

[21]

REFERENCES

M. L. R. Varela, G. D. Putnik, V. K. Manupati, G. Rajyalakshmi, J. Trojanowska, and J. Machado, “Integrated
process planning and scheduling in networked manufacturing systems for 14.0: a review and framework
proposal,” Wirel. Networks, vol. 27, no. 3, pp. 1587-1599, 2021, doi: 10.1007/s11276-019-02082-8.

V. T’Kindt and J. C. Billaut, Multicriteria scheduling: Theory, models and algorithms, Second. Springer,
2006. doi: 10.1007/b106275.

M. Karim, O. Hamlaoui, and H. Hadda, “Regular articles A simulated annealing metaheuristic approach
to hybrid flow shop scheduling problem,” Adv. Ind. Manuf. Eng., vol. 9, no. December 2023, p. 100144,
2024, doi: 10.1016/j.aime.2024.100144.

G. Da Col and E. C. Teppan, “Industrial-size job shop scheduling with constraint programming,” Oper.
Res. Perspect., vol. 9, no. March, p. 100249, 2022, doi: 10.1016/.0rp.2022.100249.

S. Dauzére-Péres, J. Ding, L. Shen, and K. Tamssaouet, “The flexible job shop scheduling problem: A
review,” Eur. J. Oper. Res., vol. 314, no. 2, pp. 409-432, 2024, doi: 10.1016/j.€jor.2023.05.017.

O. Ozturk, “When serial batch scheduling involves parallel batching decisions: A branch and price
scheme,” Comput. Oper. Res., vol. 137, no. July 2020, p. 105514, 2022, doi: 10.1016/j.COT.2021.105514.

J. Xy, J. Q. Wang, and Z. Liu, “Parallel batch scheduling: Impact of increasing machine capacity,” Omega
(United Kingdom), vol. 108, p. 102567, 2022, doi: 10.1016/j.0mega.2021.102567.

Y. Li, A. Wang, and S. Zhang, “A Batch Scheduling Technique of Flexible Job-Shop Based on Improved
Genetic Algorithm,” 2022 IEEE Int. Conf. Mechatronics Autom. ICMA 2022, pp. 1463-1467, 2022, doi:
10.1109/ICMA54519.2022.9856332.

A. Ham, “Flexible job shop scheduling problem for parallel batch processing machine with compatible job
families,” Appl. Math. Model., vol. 45, pp. 551-562, 2017, doi: 10.1016/j.apm.2016.12.034.

L. Song, C. Liu, and H. Shi, “Discrete particle swarm algorithm with Q-Learning for solving flexible job
shop scheduling problem with parallel batch processing machine,” J. Phys. Conf. Ser., vol. 2303, no. 1, pp.
1-11, 2022, doi: 10.1088/1742-6596/2303/1/012022.

B.Ji, S. Zhang, S. S. Yu, and B. Zhang, “Mathematical Modeling and A Novel Heuristic Method for Flexible
Job-Shop Batch Scheduling Problem with Incompatible Jobs,” Sustain., vol. 15, no. 3, 2023, doi:
10.3390/5U15031954.

L. Xue, S. Zhao, A. Mahmoudi, and M. R. Feylizadeh, “Flexible job-shop scheduling problem with parallel
batch machines based on an enhanced multi-population genetic algorithm,” Complex Intell. Syst., vol. 10,
no. 3, pp. 4083-4101, 2024, doi: 10.1007/840747-024-01374-7.

O. A. Olanrewaju, F. Luiz, and P. Krykhtine, “Minimum-Energy Scheduling of Flexible Job-Shop Through
Optimization and Comprehensive Heuristic,” 2024.

M. Danishvar, S. Danishvar, E. Katsou, S. A. Mansouri, and A. Mousavi, “Energy-Aware Flowshop
Scheduling: A Case for Al-Driven Sustainable Manufacturing,” IEEE Access, vol. 9, pp. 141678-141692, 2021,
doi: 10.1109/ACCESS.2021.3120126.

H. Terbrack and T. Claus, “Computers & Industrial Engineering The generalized energy-aware flexible job
shop scheduling model : A constraint programming approach,” Comput. Ind. Eng., vol. 204, no. March, p.
111065, 2025, doi: 10.1016/j.cie.2025.111065.

S. Christian, B. Daniela, and G. Guido, “A memetic NSGA - II for the multi - objective flexible job shop
scheduling problem with real - time energy tariffs,” Flex. Serv. Manuf. J., vol. 36, no. 4, pp. 1530-1570, 2024,
doi: 10.1007/510696-023-09517-7.

D. Alemdo, A. D. Rocha, and J. Barata, “Smart manufacturing scheduling approaches—systematic review
and future directions,” Appl. Sci., vol. 11, no. 5, pp. 1-20, 2021, doi: 10.3390/app11052186.

P. K. Shukla, C. Hirsch, and H. Schmeck, “Towards a Deeper Understanding of Trade-offs Using Multi-
objective Evolutionary Algorithms,” no. Mcdm, pp. 396-397, 2012.

F. Luan, H. Zhao, S. Qiang, Y. He, and B. Tang, “Sustainable Computing : Informatics and Systems
Enhanced NSGA-II for multi-objective energy-saving flexible job shop scheduling,” vol. 39, no. April 2022,
Pp. 0-2, 2023.

S. Larrain, L. Pradenas, I. Pulkkinen, and F. Santander, “Multiobjective optimization of a continuous kraft
pulp digester using SPEA2,” Comput. Chem. Eng., vol. 143, 2020, doi: 10.1016/j.compchemeng.2020.107086.
I. Huseyinov and A. Bayrakdar, “Performance Evaluation of NSGA-III and SPEA2 in Solving a Multi-
Objective Single-Period Multi-Item Inventory Problem,” UBMK 2019 - Proceedings, 4th Int. Conf. Comput.
Sci. Eng., no. 4, pp. 531-535, 2019, doi: 10.1109/UBMK.2019.8907139.

Z.Zhao, B. Liu, C. Zhang, and H. Liu, “An improved adaptive NSGA-II with multi-population algorithm,”
PP- 569-580, 2019.

Int J of Basic & App Sci, Vol.14, No. 1, Jun 2025: 01-11



Int J of Basic & App Sci p-ISSN 2301-8038 e-ISSN 2776-3013 0 11

[23] S. Zhou, M. Jin, and N. Du, “Energy-efficient scheduling of a single batch processing machine with
dynamic job arrival times,” Energy, vol. 209, 2020, doi: 10.1016/j.energy.2020.18420.

[24] D. Li, Q. Hou, M. Zhao, and Z. Wu, “Reliable Task Planning of Networked Devices as a Multi-Objective
Problem Using NSGA-II and Reinforcement Learning,” IEEE Access, vol. 10, pp. 6684-6695, 2022, doi:
10.1109/ACCESS.2022.3141912.

[25] P. Brandimarte, “Routing and scheduling in a flexible job shop by tabu search,” Ann. Oper. Res., vol. 41,
no. 3, pp. 157-183, 1993, doi: 10.1007/BF02023073.

Parallel batch processor machine scheduling using multi population strength pareto evolutionary algorithm 2
(Ferdinan Rinaldo Tampubolon, et al)



